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Kelvin wave propagation along an irregular coastline 
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We discuss the theory of Kelvin wave propagation along an infinitely long coast- 
line which is straight except for small deviations which are treated as a stationary 
random function of distance along the coast. An operator expansion technique 
is used to derive the dispersion relation for the coherent Kelvin wave field. For 
the subinertial case CT = w/f < 1 (w = wave frequency, f = Coriolis parameter), 
i t  is shown that the wave speed is always decreased by the coastal irregularities. 
Moreover, while the coherent wave amplitude is unaltered, the energy flux along 
the coast is decreased by the irregularities. For the case CT > 1. however, we 
show that in the direction of propagation the wave is attenuated (with the 
energy being scattered into the random Poincari: and Kelvin wave modes) and 
that the wave speed is again decreased. Applications of the theory are made to 
the California coast and Korth Siberian coast to determine the decrease in phase 
velocity due to small coastal irregularities. For the California coast the percent- 
age decrease is only about 1 %. For the Siberian coast, however, the percentage 
decrease is about 23 Yv for the K ,  tide, and a minimum of 2 4 %  for the iM, tide. 
The attenuation of a Kelvin wave, however, appears to  be due to  very large 
scale irregularities. An estimate of the actual attenuation rate is not possible, 
though, because of the relatively short extent of coastal contours available for 
spectral analysis. 

Although attention in this paper has been focused on Kelvin wave propagation, 
the method developed could readily be used to study the behaviour of other 
classes of waves trapped against a randomly perturbed boundary. 

1. Introduction 
The changes in behaviour of a classical Kelvin wave (Lamb 1932, $208) due 

to departures from an infinitely long and straight coastline have been the subject 
of many recent investigations. I n  most of these studies a classical linear diffrac- 
tion problem is considered: the solution is sought for the diffracted field due to 
a Kelvin wave incident upon a sharp right-angle corner (Buchwald 1968)) a 
sharp corner of arbitrary angle (Packham & Williams 1968), and an arbitrary 
distortion of semi-infinite length of a nearly straight coastline (Miles 1972a). 
In an attempt to  investigate Kelvin waves travelling dong an infinitely long 
coast (at 2 = 0 say) with small deviations J = b(y), where y is the distance along 
the coast, Pinsent (19i2) employed an ordinary perturbation scheme to determine 
the first- and second-order corrections to the wave field due to a zeroth-order 
‘incident’ Kelvin wave. However it is now well known (Frisch 1968, p. 85) 
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that  such a perturbation approach gives a uniformly valid (i.e. non-secular) 
approximation to the total field only if the deviations in the coastline have 
compact support: that is, the equation of the coastline must be of the form 

for some suitable length L. Although Pinsent does not say so explicitly, one of 
the restrictions on his solution is that either the equation of the coastline .c = b ( y )  
must be of the above form or else b ( y )  must tend to zero sufficiently rapidly as 
IyI +m. Otherwise the Fourier transforms defined just before his equation (5.1) 
would be unbounded. 

With a view towards understanding tidal propagation along an extensive 
irregular coastline, we discuss in this paper the dispersion relation for the mean 
or coherent Kelvin wave field near an infinitely long coast that is straight except 
for small deviations which are regarded as a stationary random function of position 
along t*he coast. Thus, in contrast to the earlier work on this topic, we adopt a 
stochastic model since along many continental boundaries the coast is essentially 
straight with small deviations which are indeed of a very irregular nature. 
Furthermore, the technique used involves a second-order expansion not of the 
unknown field, but of a certain differential operator occurring in the mathematical 
formulation of the problem. This procedure is equivalent to a summation of an 
infinite subseries of secular terms that results from an ordinary perturbation 
expansion (Frisch 1968, p. 116). This operator expansion approach was developed 
by Keller (1967) for the purpose of determining the dispersion relation for a 
coherent wave propagating in an infinite random medium in the absence of 
boundaries. I n  $ 2  below we show how this technique can be modified to deter- 
mine the dispersion relation for a propagating wave in a semi-infinite uniform 
medium that is trapped against a randomly perturbed boundary of infinite 
extent. Although attention in this paper is focused on Kelvin wave propagation, 
the method outlined below can readily be used to  study the properties of other 
classes of waves trapped against a randomly perturbed boundary. As examples, 
we mention here Rayleigh and Love waves in seismology, edge and continental- 
shelf waves in the ocean, electromagnetic surface waves in conductors, and 
acoustic surface waves in elastic materials and in the atmosphere. 

For the sake of completeness we note here that this paper complements the 
recent article by Howe & Mysak ( 1973), who discussed the reflexion and scattering 
of a Poincure' wave by an irregular coastline of infinite extent. Within the 
framework of a stochastic model in which the coastline has deviations represented 
by a stationary random function, they showed that a Kelvin wave can be gen- 
erated by a Poincarh wave impinging upon the coast from the open ocean. I n  
this paper we now discuss the behaviour of this Kelvin wave 8.9 i t  propagates 
along such a coastline. 

After deriving a general expression for the dispersion relation of a propagating 
coherent wave trapped against a randomly perturbed boundary in $2,  we 
formulate the appropriate boundary-value problem for Kelvin waves near an 
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irregular coastline ( 5  3). The theory in $ 2 is then used to determine the dispersion 
relation for the mean Kelvin wave field. Then, in terms of the spectrum of the 
coastal fluctuations, we prove in $5 some quite general results concerning the 
reality of the dispersion relation, the magnitude of the phase-speed change and 
the sign of the attenuation rate. These results concur with our physical intuition 
concerning scattering and wave propagation phenomena. I n  $ 6 simple formuhe 
are derived for the modified phase speed and the attenuation rate in the limit 
of short and long correlation scales. These in turn are used in $ 7  to obt,ain an 
estimate of the actual importance of coastal irregularities in the propagation of 
Kelvin waves along the California coast and North Siberian coast. 

2. Dispersion relation for waves travelling along a randomly perturbed 
boundary 

Consider the semi-infinite region 9 in the x, y plane : 

52 = {.,Y I x > ES(Y), ( Y J  < a}, 
where s(y) is a stationary random function with zero mean and e is a small 
positive parameter. Let $(x, y)ei@t be the wave field of a stochastic system 
characterized by the elliptic equation 

L$(x, y) = 0 in 9, (2.1) 

where L is a linear deterministic differential operator which ma,ps a function 
defined on 9 onto another function defined on 9. Further, suppose that for 
sufficiently small e the boundary conditions can be written in the form 

9?$ = ( B + C ) $  = F(y) on 89, (2.2) 

I+l-+O as x--tco, (2.3) 

where 8 9  = {x, y 1 x = 0, IyI < co}, and B and C = C[s] are respectively deter- 
ministic and stochastic linear differential operators which map functions defined 
on 9 onto functions defined on 89, and P ( y )  is a given deterministic function. 
For any realization of the system characterized by the random function 

S(Y) = s(y;@, 

where B E  0 = space of events, $ = $(x, y; 0) is also a random function. It is 
our purpose to derive the dispersion relation for trapped wave solutions for the 
mean or coherent field ($) that is implied by (2.1)-(2.3) when B = 0; here 
angular brackets denote the ensemble average over many realizations of the 
system. For convenience, henceforth we shall always suppress the B dependence 
of the random functions. 

Since L is deterministic, the average of (2.1) gives 

L($)=O in 9. (2.4) 

Assuming k2l can be inverted, ( 2 . 2 )  yields 

($> = (g-?P, 
16-2 
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which in turn implies that 
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(A?-')-'(~) = F ( y )  011 2 3 .  

Averaging (2.3), we find that 

( l $ / ) + O  as x+m. 

2.5)  

2.6) 

Now if L and B are translationally invariant in y, C is statistically homogeneous 
and F = 0,  t,hen (2.4)-(2.6) admit trapped travelling wave solutions 

($) = e-lz+in3g, Re 1 > 0, 

which obey the dispersion relationt given by the two equations 

e+'Lqe = 0 in 9 (2.7) 

and e-i'ng(g-1)-leq = 0 011 a g ,  ( 2 . 8 )  

where q = - Zx + imy. Following Keller (1967), we write g-' as ( I  + B-lC)-'B-l, 
use the binomial expansion and then average; this gives 

(&') = { I  - B-'(C) + B-'(CB-'C) + O[(B-'C)3])B-', (2.9) 

which is valid provided that the operator norm of B-'C is less than one. Finally, 
taking the inverse of (2.9) and dropping third- and higher-order terms in 
B-'C, we obtain the dispersion relation 

e-qL@ = 0 in 9, (2.10a) 

e-imy[B + ( C )  + (C)B-l(C) - (CB-V)] e g  = 0 on a9. (2. lob) 

Equation (2.10b) can also be derived without introducing the function F ( y )  
by converting the boundary condition into an integral equation. We write the 
boundary condition (2.2), with F = 0,  in t,he form 

B$ = -C$ on a 9 .  

Let $o be the solution in the absence of coastal irregularities which satisfies 

L$?o=O in 9, 
B$,,=O i n  8 9 .  

Hence the boundary condition for $? becomes the integral equation 

$ = $0 - B-'C$. 

Hence, we obtain $? = ( I  + B-'C)-'$o, (2.1Oc) 

where $ is the particular solution satisfying the radiation condition and 
approaches $o as c+ 0. On averaging (2. lOc), inverting, and operating with B, 

B((I + B-lC)-I)-I($) = B$?o = 0. we obtain 

Upon using t,he binomial expansion and introducing the exponentials this 
clearly reduces to  (2.10 b)  . 

t By this we mean the two relations Z = Z(w) and m = m ( o )  implied by (2.7) and (2.8). 
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It is important to note here that B-l is an integral operator which maps a 
function defined on 8 9  onto a function defined on 9: 

(2.11) 
-- m 

where LG(x, y;y') = 0 in 9, 
BG(x, y; y') = S(y - y') on a%+. (2.12) 

And since C maps functions on 9 onto functions on a%+, it follows that in (2.10 b)  
the term (CB-lC)eq(-",v) on 3 9 ,  for example, implies the following sequence of 
operations: 

[ (CB-lC) e-lrtini ~I.&l = <(Cx,,tB~~(C,,,e-"C'+' Zm~)x~=,l>x=ll~ 

= e i m " ( g [ s ] ) ,  

where 9 [ s ]  is an integro-differential functional of s that  is independent of x 
and y and Cz,, denotes an operator with x and y derivatives. 

The approximation (2 .1Ob)  has been derived by a number of authors in con- 
nexion with wave propagation in an inJnite random medium; in such a case this 
equation holds in 9 2  and e g  is replaced by eikex and e--img by e-ik*x (see, for ex- 
ample, the ' first-order smoothing approximation' of Keller 1967, Frisch 1968, 
and the 'binary collision approximation' of Howe 1971). Howe, in fact, does 
consider the case of random boundary-value problems by using both the mean 
and fluctuating field +' = $- (+). After a few simplifications of his equations 
(6.5)-(6.9), one can deduce our equations (2.10a, b ) .  

3. Boundary-value problem for Kelvin waves on an irregular coastline 
Let (x, y, z )  be a, right-handed set of rectangular co-ordinates. Then the 

linearized shallow-water equations for a homogeneous layer of fluid rotating 
uniformly about the z axis with angular velocity 4 fa re  given by 

I iwu  - f 2, + gCx = 0,  

iwv+fu+g&) = 0,  
uX+vy+iw</h = 0,  

where (u, v) is the horizontal fluid velocity, 5 is the surface elevation of the fluid 
above the mean depth h, g is the acceleration due t o  gravity and a time factor 
eiWt has been assumed for each ofthe dynamicvariables. Without loss of generality, 
we take f > 0. 

From (3.1) we readily deduce that 

I au = iwCz + f 6, 
av= - fQ+iw{  2/' 

where a = (w2-  f 2 ) / g ;  substituting (3.3) into (3.2) we obtain 

(3.3) 

as the reduced wave equation for the surface elevation. 
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Suppose that the fluid occupies a semi-infinite region with .z > 0 of the z,y 
plane and that i t  is bounded by an irregular coastline specified by the equation 

2 = Wy), (3.5) 

where b(y) is a stationary random function with zero mean. We require that, the 
velocity normal to the coast be zero; this implies that  

u = vb, on z = b(y), 
or, upon using (3.3), 

(3.6) 
where g = w/,f .  

If we introduce the horizontal length scale d = (gh)*/ f and the non-dimensional 
variables (x‘, y’, b‘) = d-l(x, y, b), equations (3.4) and (3.6) give, after dropping 
the primes, 

ice, + C, - b,( - Cz + icr&,) = 0 on z = b(y), 

Lc ( a z + a i + K 2 ) c  = 0, (3.7) 

(B-b,D)C = 0 on 2: = b(y), (3.8) 
where K 2  = Cz - 1, B = 8, - (i/g) a,, D = (i/a) a, + a,. 
We assume that the coastal irregularities are small in comparison with d ,  so 
that (the non-dimensional) b(y) can be written as 

M Y )  = EdY), (3.9) 
where s(y) is an O(1)  stationary random function with zero mean and 0 < E 6 1 .  
Finally, we expand (3.8) in powers of b and obtain the linearized boundary 
condition 

where c = E ( s ~ a , - s , ~ )  +E2( i s2~a ; - s , s~az )  + o ( E 3 ) .  (3.11) 

Equations (3.7) and (3.10) correspond to (2.11) and (2.2) (with$’ = 0). Hence 
we are now in a position to  determine the dispersion relation for a coherent 
Kelvin wave of the form 

where Re1 > 0, in accordance with (2.3). If E = 0, corresponding to  a straight 
coast, (3.7),  (3.10) and (3.12) imply that I = 1 and ?n = cr, the relations for a 
classical Kelvin wave travelling in t,he negative y direction with a non-dimensional 
phase speed of unity. 

( B + C ) c = O  on x = O ,  (3.10) 

(0 = e-lr+imy , (3.12) 

4. Dispersion relation for a Kelvin wave 
Before simplifying (2.10a, 13) for the Kelvin wave case, we derive the appro- 

priate Green’s function as defined by (2.12), with L and B given by (3.7) and 
(3.8) respectively. Let us introduce t,he Fourier transform of G: 

6(z, 7; y’) = 1 G(z, y; y’) e-iq,dy. 

Then i t  is easy to  show (Buchwald 1971) that, for cr > 1 ,  

W 

-53  
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where I? is a contour along the real 7 axis indented below the branch point 
7 = - K and above the branch point 7 = K and simple pole q = cr. With these 
indentations and the branch cut from q = - K ( + K )  extending to infinity in the 
upper (lower) half 7 plane, the radiation condition is satisfied. For the case IT < 1,  
the solution can be obtained from (4.1) by the transformations K +  -i~‘, 
where K’ = ( 1  - cr2)* > 0,  and I? + I?’, a contour along the real axis indented above 
the pole 7 = cr. 

For a Kelvin wave, ( 2 . 1 0 ~ )  yields 

12-m2+cr2-1 = 0. 
From (3.11) we deduce that 

(c) = g a ( o )  sa; + 0 ( € 3 ) ,  

where R( y)  is t,he ccivariance function defined by 

R(Y) = <S(Y +Y’) S(Y’)). 
Hence, correct to O(e2), equation (2.106) implies that 

(4.3) 

B,+BZ+B3=0,  (4.4) 
( 4 4 ,  (4.6) 

(4.7) 

where B, = - 1 + mlcr, B, = gGR(0) ( - 1 + mlcr) E 2 ,  
B 3 -  - -c2e-im~((SBa,-s,D) B-l(sBa,-s,D))eqI,=,. 

After some lengthy algebra, (4.7) reduces to 

+ G(0, y) [ - imP’(y) +P”(y)l}, (4.8) 
where P(y )  = - aZR(y) + ipR’(y), a = - 1 + m/cr, p = - l/cr + m. (4.9) 

Equations (4.2) and (4.4) represent two coupled equations for 1 and m, from 
which we seek functions of the form 1 = Z(cr) and m = m(u). Since B, and B3 are 
O(c2) ,  it is convenient to put 

(4.10) 1 = lo + e211, m = m, + @ml, 

where (lo, ma) = (1 ,  g) are the deterministic Kelvin wave relations given a t  the 
end of $3.  On substituting (4.10) into (4.2), we get, correct to O(e2), 

1, = crm,, (4.11) 

On substituting (4.10) into (4.5), (4.6) and (4.8) and noting that 

a(l,,m,) = 0 and /3(Zo,m,) = (a2- l)/cr 

[see (4.9)], we find that (4.4) reduces t,o 

+ [GX(O, Y) + G,,(O, y)1 iR’(y)} = 0, (4.12) 

which is correct to O(e2) .  Finally, if we use (4.11) to eliminat,e I, in (4.12), we get,, 
for (T =+ 1, 

m, = -/Im dye-iug(as in (4.12)}. (4.13) 
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Since R ( y )  and G(0 ,  y )  are in principle known funct,ions, the first non-trivial 
corrections to  I ,  and m, due to  the coastal irregularities are thus determined by 
(4.11) and (4.13). But since only a Fourier integral representation of G(0,y) is 
available [see (4.1)], (4.13) is not in a convenient form for further analysis. 
However, if we invoke the Wiener-Khinchin theorem, which states that  for 
ergodic stationary random processes the energy spectral density S(7) or 'spec- 
trum' is simply the Fourier transform of the covariance function R(y) ,  as defined 
by (4.3), viz. 

~ ( 7 )  = F { R ( ~ ) }  = ~ ( 7 )  = j e-iquR(y) dy ,  (4.14) 

then (4.13) can be considerably simplified by using the convolution theorem for 
Fourier integrals: 

S { h ( y )  k ( y ) }  = e-iuuh(y) k ( y ) d y  

- m  

--co 

(4.15) 

(4.16) 

q a n ) ( Y ) }  = ( i 7 ) Q % I )  = (i7PWl). (4.17) 

Hence on applying (4.15) to  (4.13) and using (4.16) and (4.17), we obtain, for 
(r> 1, 

+ [ - [(a - <)2 - K2]* + (a - - K21 

(4.18) 

Since the 7 and < planes are related by the equation 5 = a - 7, the path C in 
(4.18) is indented below the branch point at < = a-K (7 = K )  and above the 
branch point a t  [ = a +  K (7 = - K ) .  Since the integrand has a simple zero a t  
5 = 0 (7 = C T ) ,  C is not indented a t  < = 0. For a < 1, it follows that 

(4.19) 
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5. Consequences of Kelvin wave dispersion relation 
We now deduce some very general results which follow from (4.18) and (4.19). 
(1) For cr < 1, m, and hence I ,  [see (4.11)] are real. Since [(cr-5)2+~’2]* > 0 

for cr < 1 and X(5) is real and positive, this result follows immediately from 
( 4.19). 

This result is not unexpected on physical grounds in the sense that, when 
cr < 1, ~2 < 0 and hence (3.7) does not have unattenuated plane wave (i.e. 
Poinear6 wave) solutions. Therefore any energy that is initially trapped against 
the coast in the form of a Kelvin wave cannot be radiated away from the coast. 
However, it is important to note that, because of the modification of the dis- 
persion relation, the group velocity and hence the energy flux of the coherent 
wave differ from the corresponding quantities for a wave travelling along a 
smooth coast. In  fact, we show below (result 3) that the presence of the coastal 
irregularities decreases this energy flux. Since backscatter up the coast and 
radiation away from the coast are not possible, this decrease in energy flux is 
balanced by a corresponding increase in the energy flux associated with the 
fluctuating Kelvin wave field. (For further elaboration on this for conservative 
systems, see Howe 1973.) 

(2) For CT < 1, m, > 0 and hence the phase speed c < c, = 1 (the deterministic 
value) and 1 > Z, = 1. To establish that m, > 0, we first rationalize the denomi- 
nator in the integrand of (4.19) by multiplying the numerator and denominator 
by u[ ( cr - ,$)2 + ~ ‘ 2 ] *  + cr - f;. This gives 

where H(5) = {- 1 +[(CT-5)2+K12]4)/(5- 2 4 .  ( 5 . 2 )  

For real 5 i t  is easy to show that H(5) is a monotonically increasing function 
which is negative for ,$ < 0 and positive for 5 > 0. I n  fact H - t  - 1 as f;+ - CO, 

H - t  1 as ,$-too and H ( 0 )  = 0. Hence the integrand of (5.1) is positive for all 5 
since (S(E) $ 0  for f ;  $0. Hence m, > 0. 

Since m, = cr, the phase speed c = a/(o + e2ml) = 1/( 1 + e2mJa) < 1 form, > 0. 
Similarly, the attenuation scale normal to the coast is increased since 

I = I, + €21, = 1 + E ~ c r r n l  > 1. 

The slowing down of the mean Kelvin wave by the coastal irregularities is 
also in agreement with physical intuition since in travelling between two points 
on the coast, the effective coastline is now much longer than in the deterministic 
case and hence the travel time of the wave is effectively increased. 

(3) For cr < I, the group velocity cg < 1 and the energy jlux F < F,, where F, 
is  the energy jlux in the absence of coastal irregularities. The group velocity (in 
the negative y direction) cg is evaluated from the relation cy = da/dm. Since 
m(cr) = cr + e2m,(cr), differentiating both sides of this equation gives 

cg = 1/(1+€2drn,/dC7). 
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Using (5.1) and (5.2), we have 
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It can be shown that P(c) has a similar signature behaviour to  H ( 5 )  as a function 
of c. Thus dm,/da > 0, which implies that, cg < 1 .  The energy flux (in the nega- 
tive y direction) of the coherent Kelvin wave is given by 

F = c ~ E ,  (5.3) 

where E is the energy density per unit length of coast. In  terms of the energy 
density J!? per unit area, we have 

(5.4) 

where (5.5) 

The average values of u and v can be calculated from (3.3). Using (5) = e-lz+in'g 
and after some algebra, we have, to  O ( E ~ ) ,  

J!? = &Ph(l (U>12 + I ( + I 2 }  + iP9l ( # I 2 -  

Combining (5.3)-(5.6) gives 

F = (pg2h/2f)  [ 1 - (dm,/da + am,)  + O(e4)]. 

Since both dm,/da and m1 are positive, we conclude that 

F < Fo = pgh2//2f. 

This result shows that a Kelvin wave will lose energy through scattering when it  
encounters an extensive irregular coastline. 
(4) For Q > 1 ,  m, is complex and hence I ,  = am, is complex, with 

For 5 > a + K and f < - K ,  the integrand in (4.18) is real and hence the first 
term in (5.7) is real. For V-K < 5 < a + ~ ,  [ ( ( T - ~ ) ~ - K ~ ] *  = i [~~-(a-E)~])  for 
the branch-cut configuration discussed in the sentence following (4.18). Upon 
rationalizing A ( ( )  for this range of 5 and separating into real and imaginary 
parts, we readily obtain the second term in (5.7) and the expression for ,u2 in 
(5.8). 

As a consequence of result 4, the Kelvin wave crests are no longer perpendicular 
to  the mean shoreline z = 0, and there now exists the possibility of attenuation 
or growth in the y direction. Putting m = a + e2(pl + ip,) and 1 = 1 + ~ ~ a ( p ~  + ip') 
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into (3.12)) and incorporating the time dependence in the form eirrt, where t is 
the non-dimensional time, we obtain 

(5 )  = exp{- (1+s2ap , )x -pzy- i [~2apz~- (a+~~p1)~-a~]} .  (5.9) 

Since 0 < K < a and hence 0 < CT - K < 5 < a + K < 2a, i t  follows that the inte- 
grand in (5.8) is positive. Hence we have the following result. 

( 5 )  For a > i ,pz  E Imm, < 0. 
As a consequence of result 5 and (5 .9)  we note that the wavenumber vector 

(e%p,, - a - e2p1) is directed towards the third quadrant in wavenumber space. 
Thus, as the mean Kelvin wave propagates along the coast in the negative y 
direction, the wave crests are turned slightly towards the coast. Further, we 
observe that the mean wave is continually attenuated as it propagates along 
the coast. This behaviour is again understandable on physical grounds upon re- 
calling that, for the case g > 1, Poincari: waves can now exist and can radiate 
energy off to infinity away from the coast. Since the mean Kelvin wave is turned 
towards the coast, part of its energy is continually being scattered into the 
fluctuating Poincar6 field (and fluctuating Kelvin field) and consequently the 
mean amplitude must decrease in the direction of propagation. These remarks 
are again in keeping with the general result of Howe (1973), who showed that, 
for conservative systems in an infinite random medium, there is always a net 
transfer of energy from the mean field to  the fluctuating field. 

(6) For a > 1, pul = Re m, > 0 and hence the phase speed G < 1. Since the second 
term in (5.7) is obviously positive, we simply have to show that the first term is 
positive. If A(g) in (4.18) is rationalized, we find that 

A (6)  = { 1 - [( - g)' - K 2 ] g } / (  2V - <) . (5.10) 

It is fairly easy to show from (5.10) that for - co < < < a - K 

< o ,  - 0 O < g < o ,  

A(5)  = 0, 6 = 0, i > o ,  O < [ < V - K .  

I n  fact A(<) is a monotonically increasing function with A( -00) = - 1 and 
A ( ~ - K )  = l / ( a + ~ )  for thisrange of 6. For a + ~  < < co, A(g) is a monotonic- 
ally decreasing function that is always positive with A(a + K )  = I/(. - K )  and 
A(co) = 1. Hence the integrand in the first term in (5.7) is positive for 

-a < 6 < a-K and V + K  < g < 00 
and hence ,ul > 0. 

From (5.9) we see that the phase speed is given by 

c = a/[€*a'pz" f (a + €'pl)"J 

= 1/[€4,4 + (1 + ~ ~ , 4 / ~ - ) ~ ] 4  

< 1 since p1 > 0. 



253 L. A .  Mysak and C .  L. Tang 

6. Asymptotic solutions 
The expressions for m,, namely (4.18) and (4.19), can be simplified considerably 

if the correlation scale 9 measured in units of the length scale (gh)*/ f is either 
very short or very long. We calculate separately the asymptotic forms of m, 
forthefollowingfourcases:(i)r< 1 , 9 %  l ; ( i i ) g  < 1 , 9 <  l ; ( i i i ) g >  1 , 9 %  1 ;  
(iv) CT > 1 , 9 <  1. 

(i) (T < 1 ,9  3 1. From (4.19), we have 

where 

which can be simplified to the following form after rationalization : 

A*(C) = (1 - [ (g -5 )2+~’2 ]* ) / (2~-5 ) .  (6.2) 

Since S(5) is the Fourier transform of R(y) ,  a long correlation scale corresponds 
to  a short range of 5 in S(5). I n  other words, if R(?/) Y 0 for Iy( > 9 $. 1, then 
S(5) N 0 for 151 > k, where the cut-off wavenumber k is of order 1/23’ < 1. Con- 
sequently, we can estimate the integral by expanding A* in a. power series about 
5 = 0 and calculate the contribution from the lowest-order term in the series. 
Thus we have 

A*(5) = 4 5 + W 2 )  

(ii) CT < 1 , 9  < 1. Contrary to the previous case, k $. 1 for a short correlation 
scale. The integral in (6.1) can be separated into three parts: 

For the first integral, we expand <A* about 5 = 0, and for the second and the 
third ones, we expand about r = l/c = 0. We thus find 

where i t  is assumed that S cc r2+= (a > 0) as r+ 0 so that the second and third 
integrals converge. Thus we have 
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In  arriving a t  the final form in (6.4) we have neglected the integral from - I to 

1 and replaced by s,. This i s  justifiable owing to the long-range 

nature of #(<). That is, since k $ 1 for this case, #(<) = O(1) over the extensive 
intervals - f c  < f < - 1 and 1 < < < fc .  We note that, in both the above cases, 
the expressions (6.3) and (6.4) are real and positive, as required by results 1 
and 2. 

1.  For a > 1, m, is given by (6.1) with A*(<) replaced by A ( < )  
[see (4.18)], i.e. K ' ~  replaced by - K ~ .  The two branch points of A ( < )  in the f 
plane are a t  a-K ( >  0) and a + ~  ( >  0). Thus, for f < ( T - K  and f > ( T + K ,  

A(<) = A*(<). For a sufficiently narrow-ranged a(<), the major contribution to 
the integral comes from f around zero, where A(<)  = A*(<). Hence m, has the 
same asymptotic expression as that in case (i), namely, (6.3).  The fact that m, 
is real in this limiting case is not surprising on physical grounds since a large 2 
would correspond to  a relatively smooth coastline, in which case scattering and 
attenuation effects are expected to be negligible. 

(iv) a > 1,  9 < 1.  The general expression for the real part of m, is given by 
(5.7). I n  the large-k limit, the range of integration of the third term is very 
small compared with those of the first two terms. We can thus neglect the third 
term in this calculation. 

(iii) a > 1 , 9  

As noted above, A(<)  = A*(C) outside a-K < f < a + ~ .  We can define 

We then follow the same procedure as in case (ii) to evaluate the integral. The 
result turns out to be the same as that of (ii). This is due to the fact that the 
dominant contribution to the integral comes from I f )  3 1 in &f) ,  where 2 is 
equal to  A*. 

The imaginary part of m, is given by (5.8), i.e. 

S ( f )  can be treated as constant over the small interval of integration 2 ~ ,  and 
hence can be approximated by #(a). A simple calculation then gives 

,u~ cz - @ ( a - l ) ( 3 ( ~ - 1 ) # ( ( ~ ) .  

These results are summarized in table 1 below. 

7. Applications to California coast and Siberian coast 
From the results of the last section, we see that the magnitudes of the irregu- 

larities and the correlation scale of il coastline relative to  the horizontal length 
scale (gh)*/f are the main factors in determining the corrections to the phase 
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u < l  u >  1 

TABLE 1. The asymptotic expressions for m, in the limit of 
long and short correlation scales 

speed and wave amplitude. To illustrat,e this, we shall apply our theory to two 
pieces of coastline with differing length scales and calculate numerically the 
effects of such irregularities. 

The theory predicts average results for an ensemble of coastlines, under the 
assumption that this ensemble represents a stationary random function. To 
apply the theory we must therefore assume (a )  that there exists a stationary 
random function s (y)  of which the actual coast under consideration is a suffi- 
ciently typical realization and that the theoretical average effects on Kelvin 
waves give a good indication of the actual effects of this coastline on Kelvin 
waves; ( b )  that the required statistical properties of s (y)  can be estimated by 
taking spatial averages along the actual coastline, i.e. s (y)  must be taken t o  be 
ergodic. (This is consistent with (a )  since ergodicity implies stationarity.) We 
further assume that a spectral estimate based on a finite length of coastline is 
sufficiently accurate. 

(i) California coast. The average depth of the Pacific off the California coast 
is taken to be 3-4 km. This gives a length scale (gh)+/f of 2600 km. The coast 
covered in our calculation is from the southern tip of Baja California to  Cape 
Mendocino. Instead of the actual coastline, the contour of the 1000 fathoms 
depth line was used in the calculations as it is a better approximation of the 
vertical coast assumed in the theory. This contour is shown in figure 1. The 
direction of the axis is somewhat arbitrary, but this uncertainty should not 
affect the results a t  large g. The contour was digitized with 320 points and the 
U.B.C. BMD02T program was used to perform the spectral analysis. The results 
are shown in figure 2. The bars indicate the range within which 90 yo of statistical 
variations due to the limited length of record should fall. 

The distance over which the covariance function (not shown) has large values 
is about 0.15. Hence the equations appropriate for small 9 should be used in 
calculating m,. The range of integration in (6.4) is from 0 to  03. But as can be 
seen from figure 2, the contribution from very small 5 is hard to estimate. We 
thus calculate instead the integral 

which gives (negative) corrections to the phase velocity due to coast'al irregulari- 
ties of dimension smaller than 2n/c. Calculated values of this integral are shown 
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FIGURE 1. The contour of the 1000 fathom depth line from the southern tip of 
Baja California to  Cape Mendocino. 

in figure 3. By extrapolating the curves to = 0 and considering statistical 
error, we may conclude that the percentage decrease lAcl/c in phase velocity, is 
in the range 0 - 6 - 1 . 6 ~ 0 .  (See phase speed formulae in results 4 and 6, with 
E = 1.) 

The imaginary part of m, is determined by the value of X(<) a t  < = cr. For 
diurnal and semi-diurnal tides, cr = 1 and cr = 2 respectively. It is clear from 
figure 3 that the coast is too short to yield information about X(<) at < = 1 or 
< = 2, corresponding to relatively long length scales. This implies that the 
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FIGURE 2.  Power spectral density S(5) of the 1000 fathom contour of the California coast. 

The unit of the abscissa is k = tJ2n. The error bars are the 90 % confidence limits. 
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versus k ( = E/2n) and h = 2600 km1.k. The large range of values of this integral for each 
f or h reflects the large statistical error in S(5). 

~~ 
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1150 1 

FIGURE 4. The coastline of the East Siberian Sea and Lsptev Sea, 
covering an east-west span of about 3500 km. 

energy of Kelvin waves is dissipated through scattering from large scale irregu- 
larities only. Therefore we conclude that in a relatively short length of coast- 
line, in which large scale irregularities are absent, attenuation will likely be very 
small. In  fact, the amplitude of a Kelvin wave is more likely to  increase owing 
to the influx of energy from incident Poincarh waves (Howe & Mysak 1973). 

(ii) North Siberian coast. The coastline of the East Siberia Sea and Laptev 
Sea from Olenekskiy Bay to the Bering Strait (see figure 4) is characterized by 
fairly large scale irregularities and shallow off-shore waters. The average depth 
of the East Siberia Sea and the Laptev Sea is about 100 m, with a corresponding 
length scale for Kelvin waves of 220 km. 

The spectrum of the coastline is shown in figure 5. We notice that the band- 
width of wavenumbers is considerably smaller than that, for the California coast. 
This is a result of a relatively large correlation scale of the irregularities. Because 
of this, the exact expressions for m,, (4.18) and (4.19), were used to calculate 
the correction to the phase speed. In  the case of semi-diurnal M, tide, (T = 1.04, 
and the two branch points of the integrand in (4.18) are both near c = 1. Since 
the spectral analysis only covers values o f t  greater than about 2,  the integration 
does not include the branch points. 

We show in figures 6 ( a )  and (b)  values of the integral 

I7  F L M  64 
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i (=  Elen) 
FIGURE 5. Power spectral densityAS([) of the coastline of the East Siberian Sea and Laptev 
Sea. The unit of the abscissa is k = [/en. The error bars are the 90 yo confidence limits. 

for the cases u = 0.54 (diurnal K ,  tide) and u = 1.04 (semi diurnal M, tide) as 
a function o f f .  The figures show that the correction for the M2 tide is greater 
than that for the K,  tide. This result is expected since the M, tide has a shorter 
wavelength and hence is more sensitive t'o the irregularities. The upper curve 
for the M, tide is probably too large for the theory to be valid. We can, however, 
set a lower limit for the percentage change in phase velocity: ]4c l /c  2 25%. 
For the K ,  tide, lAcl/c is in the range 18-34 yo. 

As in the case of the California coast, the Siberia coastline is too short to  yield 
information about the imaginary part of ml. 
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FIGURE 6 .  The integral 

versus k ( =  [/%) and h = 220 km/k for ( a )  a = 0.54 and ( b )  a = 1.04. The large range 
of values of this integral for each [ or h reflects the large statistical error in S(5). 

17-2 
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8. Summary and concluding remarks 
We have shown that coastal irregularities can cause a coherent Kelvin wave 

to slow down and to  give up part of its energy in the form of random or fluctuating 
Poincark and Kelvin waves. For w < f, only Kelvin waves can be generated by 
forward scattering from the irregularities. Although the wave amplitude re- 
mains unchanged, the group velocity and hence energy flux decrease as a result 
of the modification to the dispersion relation. For w > f scattering from the 
irregularities can produce both Kelvin and Poincar6 waves, and the energy 
associated with the Poincark waves is radiated away from coast; also in this 
case the wave amplitude decreases with position in the direction of propagation 
along the coast. The size of the decrease in phase velocity and wave amplitude 
is determined by an  integral involving the power spectrum of the coastline. 

I n  the case of the California coast, the decrease in phase velocity is about 1 %. 
Measurements by Munk, Snodgrass & Wimbush ( 1970) yielded non-dimensional 
speeds of 1-1 for Kl tides (a = 1 )  and 0.7 for M2 tides (u = 2). Our calculations 
suggest that the deviations from the theoretical values for both the K ,  and Icf, 
tides are not due to coastal irregularities. It is well known that an isolated 
harbour or promontory can cause a phase shift in a Kelvin wave (Miles & Munk 
1961; Miles 1972b), but such phase shifts cancel each other on a coast with 
continuous irregularities. The residual effect is of order (crn-E”)z. Therefore, for 
any appreciable change in a Kelvin wave of a given frequency or wavenumber, 
either the magnitude of the irregularities or the correlation scale 9 has to be 
large. 

The measurements also show that, while the amplitude of the K ,  tide is 
roughly constant, the M, tidal amplitude increases in the direction of propaga- 
tion. Our results (see table 1) indicate that the change (i.e. decrease) in the wave 
amplitude is caused by large scale irregularities only. For example, for the semi- 
diurnal tides, the length scale which will produce a noticeable change in the 
amplitude is of order 2nlm 2i 3, which corresponds t o  a stretch from Alaska to 
Central America. Therefore, the presence of coastal irregularities from Baja 
California to Cape Mendicino do not account for the observed changes. Such 
changes are more likely to be due to  effects such as transfer of energy from 
Poincare waves (Howe & Mysak 1973), forcing by the tidal potential as modified 
by distortions in the sea bottom (Munk et al. 1970), and curvature of the earth 
(Miles 1 9 7 2 ~ ) .  

The percentage decrease in phase speed for the Siberian coast is greater than 
that for the California coast by one order of magnitude. For the Mz semi-diurnal 
tide, we find a lower limit of 25 % and for the K ,  diurnal tide, a decrease of about 
25 %. Data for the Siberian coast are not available, but it would be interesting 
to  see if observations do show this marked decrease from the classical value (gh)t .  

This work was initiated while L.A.M. was a Senior Visitor in the Department 
of Applied Mathematics and Theoretical Physics, University of Cambridge, 
during 1971-1972. Also, the support of the National Research Council of Canada 
through grants A7490 and A5201 is gratefully acknowledged. Finally, we are 
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